
MS&E 319: Matching Theory
Instructor: Amin Saberi
Lecture date: 9/26/2019 Scribe: Matt Tsao

1 Polynomial Identity Testing
Suppose we want to determine whether two given polynomials (e.g. (x − 1)(x + 1) and x2 − 1)
are identical. One way would be to expand each polynomial and compare coefficients. A simpler
method is to evaluate both polynomials at several points to see if they agree. If they do not, we
now have a certificate of their inequality, otherwise with good confidence we can say they are equal.
This idea is the basis of a randomized algorithm.

We can formulate the polynomial equality verification of two given univariate polynomials F
and G as determining whether their difference H(x)F (x) − G(x) is identically zero. Denote the
maximum degree of F and G as n. Assuming that F (x) ̸= G(x), H(x) will be a polynomial of
degree at most n and therefore it can have at most n roots. Choose an integer x uniformly at
random from {1, 2, . . . , nm}. H(x) will be zero with probability at most 1/m, i.e the probability of
failing to detect that F and G differ is “small”. After just k repetitions, we will be able to determine
with probability 1− 1/mk whether the two polynomials are identical i.e. the probability of success
is arbitrarily close to 1.

The following result, known as the Schwartz-Zippel lemma, generalizes the above observation
to polynomials on more than one variables:
Lemma 1 Suppose that F is a polynomial in variables (x1, x2, . . . , xn), and that F is not identically
zero. For 1 ≤ i ≤ n, let di be the degree of F (·) in xi. Also, for 1 ≤ i ≤ n, let Ii be a finite subset
of elements in the domain of xi. Then the number of roots of F (·) in set I1 × · · · × In is at most:(

n∑
i=1

di
|Ii|

)
n∏

i=1

|Ii|

Proof: The case n = 1 is obvious since a nonzero polynomial of degree d can have at most d real
roots. We proceed by induction on n. Let F ′ be the polynomial on x2, . . . , xn, a polynomial on at
most n − 1 variables. If (y2, · · · yn) is not a zero of F ′, F (x1, y2.....yn) has at most d1 zeros in I1.
By inductive hypothesis we have a bound on the number of roots of F ′ in I2 × · · · × In. It follows
that the total number of zeros of F in I1 × · · · × In is bounded by

d1(|I2| · · · |In|) +

((
n∑

i=2

di
|Ii|

)
n∏

i=2

|Ii|

)
|I1|

which gives the desired bound. 2

2 Perfect Matchings in Bipartite Graphs
Given a bipartite graph G(U,V,E) where |U | = |V | = n, define the matrix A as follows:

aij =

{
1 if i ∼ j, i ∈ U, j ∈ V
0 otherwise.

where ∼ means vertices i and j are adjacent in G. Recall that a matching is a set of edges such
that no two have a vertex in common. A perfect matching is one that covers all vertices of G.

Lemma 2 If det(A) ̸= 0 then G has a perfect matching.
Proof: Recall the definition of determinant:

det(A) =
∑
π∈Π

sgn(π)

n∏
i=1

aiπ(i)

where Π is the set of all permutations of {1, . . . , n}. Recall that a permutation of size n is just a
bijection from {1, . . . , n} 7→ {1, . . . , n}. The sign sgn(π) of a permutation π is +1 if the number of
inverted pairs is even and it is −1 if the number of inverted pairs is odd (pair i and j are inverted
in π if i < j and π(i) > π(j)). One can also see a permutation π as describing a perfect matching
in a bipartite graph: for each vertex i ∈ U , we match it to vertex π(i) ∈ V .

For a bipartite graph G with adjacency matrix A, the value of
∏n

i=1 aiπ(i) will be non-zero if
and only if all terms aiπ(i) are nonzero, i.e. each (i, π(i)) is an edge of G, so π describes a perfect
matching in G. Since the determinant is the sum of these terms, it follows that if det(A) is nonzero
there must exist at least one perfect matching in G. 2

Since computing the determinant of a matrix is easy, this gives us a simple test for determining
if G has a perfect matching. However, this only gives us a sufficient condition, not a necessary one.
It is possible that G has many perfect matchings, but has equal numbers of ones with odd and
even permutations, leaving det(A) = 0. For example, the complete bipartite graph has a perfect
matching but its adjacency matrix is all 1’s matrix, which is rank deficient. So how can we modify
this so that it is also a necessary condition?

For variables xij define the matrix B such that

bij =

{
xij if i ∼ j, i ∈ U, j ∈ V
0 otherwise.

Lemma 3 det(B) ̸= 0 if and only if G has a perfect matching.
Proof: ⇒: Choose the permutation π that corresponds to a nonzero term

∏n
i=1 biπ(i) in det(B).

Then {i, π(i)} for i = 1, . . . , n gives a perfect matching.
⇐: set all xij corresponding to edges in a perfect matching to 1 and the rest to 0. It follows that
det(B) ̸= 0. 2

This suggests the following algorithm to determine whether G has a perfect matching. We just
need to see if a multivariate polynomial of degree at most n is equivalent to 0. There can be up to
n! terms in the determinant of B, but we can apply the “randomized polynomial identity testing”
given in section 1 to design an efficient algorithm.

Algorithm 1. Randomized algorithm to detect a perfect matching:

1. Set xij to be a number chosen uniformly at random from {1, . . . , n2m}

2. Compute det(B)

3. If det(B) = 0 repeat until confidence is above the desired threshold

The polynomial corresponding to det(B) is of degree one in each xij ; there are at most n2

variables, thus the probability that we choose a root is at most 1/m in one trial. As before, k trials
yield a probability 1− 1/mk of failure.

3 Perfect Matching in General Graphs
For a given graph G(V,E) and variables xij define the Tutte matrix T as follows:

tij =

xij if i ∼ j, i > j
−xji if i ∼ j, i < j
0 otherwise.

The intuition is that while a bipartite graph has no odd cycles, a general graph G might. For
this reason, in a general graph, not every permutation π such that {i, π(i)} is an edge in G will
correspond to a perfect matching. The Tutte matrix addresses this problem by ensuing that all
odd cycles cancel each other out. To be more precise, we state the following lemma.

Lemma 4 det(T) ̸= 0 iff G has a perfect matching.
Proof: ⇐: Since G has a perfect matching |V | = n is even. Given perfect matching M with
each edge and (arbitrarily) ordered pair (i, j). Set xij = 1 for (i, j) ∈ M and i > j, otherwise set
xij = 0. Let π be a permutation such that for each (i, j) ∈ M we have i = π(j) and j = π(i). Now
consider the term

∏n
i=1 tiπ(i) of det(T). It is is clearly equal to 1. Moreover, all other terms are

zero, therefore det(T) ̸= 0.
⇒: Note that a permutation π can be decomposed into a collection of cycles where each element

exchanges places with the next. For example the permutation 2, 1, 3 of 1, 2, 3 is decomposed into
σ1σ2 = (3)(1, 2). Any permutation on n elements can be uniquely expressed as a collection of
disjoint cycles.

Suppose permutation π has odd cycle σ = (i1, i2, . . . , ir), i.e r is odd, so that ik+1 = π(ik).
Consider permutation π′ which is the same as permutation except that the cycle σ is reversed, i.e.
ik = π′(ik+1). It is not hard to check that

sgn(π)

n∏
i=1

tiπ(i) = −sgn(π′)

n∏
i=1

tiπ′(i)

since we negate an odd number of terms in the product corresponding to π′ by definition of T but
the sign of the two permutations remains the same. Then when evaluating det(T) we note that
permutations with odd cycles cancel out. (note that cycles of length 1 evaluate to zero above since
we assume G is simple).

Thus since det(T) ̸= 0, T must have a permutation whose corresponding cycle decomposition
consists only of even cycles. Note that each such cycle corresponds to a perfect matching over the
vertices in it. Since the cycles are always disjoint we have a perfect matching in G. 2

We can use Algorithm 1 to detect a perfect matching in a general graph by using matrix T
instead of B.

Next we present the work of [MVV87] that extends the randomized algorithm for detecting
the existence of a perfect matching in a graph to actually finding a perfect matching. The key
computational step will be matrix inversion.

4 The Isolating Lemma
First we establish a key (and surprising) property of subsets of random numbers:

A set system (S, F) consists of a finite set S of elements, S = {x1, x2, . . . , xn} and a family F of
nonempty subsets of S, i.e. F = {S1, . . . , Sk} such that Sj ⊆ S and Sj ̸= for j = 1, . . . , k. For each
element of S, assign weight wi to xi, where wi is chosen uniformly at random and independently
from {1, 2, 3, . . . , 2n}. Denote the weight of set Sj to be

∑
xi∈Sj

wi.

Lemma 5 (The Isolating Lemma) The probability that there is a unique minimum weight set is at
least 1/2.

Proof: Fix the weight of all elements except xi. Given F , define the threshold for element xi to be
the number αi such that if wi > αi then xi is in no set with minimum weight, and if wi ≤ αi then
xi is in some set with minimum weight. Clearly, if wi < αi, then xi is in every set with minimum
weight. The only ambiguity occurs when wi = αi. In this case we say that xi is singular.

A key observation is that the weight of element xi is independent of the threshold value αi. Since
wi is chosen uniformly at random from {1, . . . , 2n}, the probability that an element is singular is
at most 1

2n . If no element is singular, then the subset with minimum weight is unique. Since S
contains n elements, the probability that S contains a singular element is at most n · 1

2n = 1/2.
Thus, with probability at least 1/2, there exists no singular element, implying the lemma: 2

5 Finding a Perfect Matching in a Bipartite Graph
Given a bipartite graph G(U, V,E), assign to each edge {i, j} ∈ E a weight wij chosen uniformly
and independently from {1, . . . , 2m}, where m = |E|. By the isolating lemma, the minimum weight
perfect matching in G will be unique with probability at least 1/2.

As in the previous lecture, we define the matrix B such that

bij =

{
xij if i ∼ j, i ∈ U, j ∈ V
0 otherwise.

Set each xij = 2wij . Let Bij be the matrix obtained from B by removing the ith row and jth

column. Now, suppose that there is a perfect matching, call it M , and furthermore, suppose it has
a unique minimum weight W . Recall from the previous lecture that det(B) ̸= 0 if and only if there
exist a perfect matching in the graph G. We can now state two useful lemmas regarding the value
of det(B).

Lemma 6 det(B) ̸= 0 and the highest power of 2 that divides det(B) is 2W .
Proof: Since we’ve assumed the existence of M we must have det(B) ̸= 0. Also, recall that by
definition

det(B) =
∑
π∈Π

sgn(π)

n∏
i=1

biπ(i)

Let πM be the permutation corresponding to M , with
∏n

i=1 biπM (i) = 2W . The value of every
other permutation is either 0 or 2W

′ with W ′ > W . If we factor out 2W then all the terms in the
sum are even numbers except for the term corresponding to permutation πM , which is 1. Thus
det(B) = 2W r where r is an odd number. 2

Lemma 7 The edge (i, j) belongs to M if and only if det(Bij)/ 2
W−wij is odd.

Proof: Note that
det(Bij)2

wij =
∑

π:π(i)=j

sgn(π)
n∏

i=1

bi,π(i)

Let πM be the permutation corresponding to M , so πM appears in the sum above. As in the proof
of Lemma 6, its weight is 2W and all other permutations will either have weight 0 or 2W

′ with
W ′ > W . Therefore, 2W will be the highest power of 2 which divides the right hand side. The
result of that operation makes the right hand side odd and the forward direction follows.

Now, if (i, j) /∈ M , then all permutations π in the sum will have weight zero or 2W
′ with

W ′ > W . It then follows that dividing both sides by 2W leaves the right hand side even. This
implies the backwards direction. 2

Using Lemma 6 we can recover W by calculating the determinant of B, computing the highest
power of 2 that divides its value and taking log base 2. Lemma 7 gives us a way of recovering the
edges which belong to M . For each edge we have to compute det(Bij) and check if det(Bij)/2

W−wij

is odd. This may seem difficult but we have a nice way of doing this via matrix inversion. Recall that
the adjugate of a matrix B, denoted adj(B) is a matrix in which entry ij is given by (−1)i+jdet(Bji),
the transpose of the cofactor matrix of B. Now we use the following useful result from linear algebra.

adj(B) = B−1det(B)

By inverting B we can recover the values det(Bij) for each edge, and test if that edge is in the
matching M . The following is an algorithm summarizing the procedure.

Algorithm 2. Randomized algorithm to find a perfect matching:

1. Compute det(B) and obtain W and let M = {}

2. Compute adj(B) and recover each det(Bij)

3. For each {i, j} ∈ E if det(Bij)/2
W−wij is odd and add {i, j} to M .

Since M will be unique with probability at least 1/2, we only need to run this algorithm a
constant number of times to have an arbitrarily high probability of success!

6 Finding a Perfect Matching in a General Graph
Here, we consider any undirected simple graph G(V,E) where |V | = n (note, the number of vertices
was 2n in the bipartite case). Recall from last lecture the definition of the Tutte matrix T of G:

tij =

xij if i ∼ j, i > j
−xij if i ∼ j, i < j
0 otherwise.

As in the bipartite case, set each xij = 2wij , where wij is chosen uniformly at random and inde-
pendently from {1, . . . , 2m} where m = |E|.

We have shown in the previous lecture that

det(T) =
∑
π∈Π

sgn(π)

n∏
i=1

tiπ(i)

does not equal zero if and only if G has a perfect matching. Recall that any permutation π on
n elements can be uniquely expressed as a collection of disjoint cycles π = σ1σ2 . . . σk. We have
shown that permutations with an odd length cycle in their cycle decompositions cancel out and
do not contribute to det(T). Thus we only need to consider permutations containing even length
cycles. Now, consider a perfect matching M of G. We state two useful lemmas.

Lemma 8 There exists a permutation πM corresponding to M which has a cycle decomposition
composed only of cycles of length 2.
Proof: This is easy to see since each cycle of length 2 contains two elements which, since the cycles
must be disjoint, correspond to vertices that are endpoints of edges in M . 2

Lemma 9 Any permutation π′
M corresponding to M with a cycle of length greater than 2 increases

det(T) more than some πM from lemma 8.

Proof: To see this let σ = (i1, i2, . . . , ir) be a cycle of even length in permutation π′
M . Consider

the corresponding cycles in πM which are either (i1, i2) . . . (ir−1, ir) or (ir, i1) . . . (ir−2, ir−1). Say
that the first has a product over tij with value a2 and the second has value b2. These values are
powers of 2 since each edge is in the product exactly twice i.e. xij and −xij . Then the product
over σ is

ab =

r∏
j=1

tijij+1 .

Note that min{a2, b2} ≤ ab so one of the matchings πM made up of only cycles of length 2 will
have have less contribution to det(T). 2

Now let M be a prefect matching of minimum weight W . By lemmas 8 and 9, a permutation
πM corresponding to M must have a term (−1)n/222W in the sum in det(T) and all other terms
will be of the form 22W

′ with W ′ > W . Thus we can conclude lemmas analogous to lemmas 6 and
7, stated here without proof.

Lemma 10 det(T) ̸= 0 and the highest power of 2 that divides det(T) is 22W .

Lemma 11 The edge {i, j} belongs to M if and only if det(Tij)/ 2
2W−wij is odd.

The algorithm to find the minimum matching in general graphs is the same as algorithm 2 except
we replace B by T and W by 2W .

7 Finding Maximum Matchings
Algorithm 2 can be generalized to find maximum matchings in graphs that do not have per-
fect matchings. Suppose we want to determine whether a graph G(V,E) has a matching of
size ⌊n2 ⌋ − k where |V | = n. Consider a new graph Gk(Vk, Ek) obtained by introducing new

vertices Uk{u1, u2, ..., uk} and connecting them to all members of V so that Vk = V ∪ Uk and
Ek = E ∪ {(u, v)}u∈U,v∈V . By construction, G has a matching of size ⌊n2 ⌋ − k if and only if Gk

has a perfect matching. To recover a matching M of G from a perfect matching Mk of Gk, simply
discard all edges of Mk incident to Uk. Therefore, a perfect matching in Gk for the smallest k for
which Gk has a perfect matching gives a maximum matching of G.

8 Finding perfect matchings with parallel computation
The NC complexity class comprises problems that can be solved by a deterministic algorithm using
O(logc1 n) time and O(nc2) processors where n is the size of the input, for some constants c1, c2.
The RNC complexity class does not require the algorithm to be deterministic, so long as the output
is correct with high probability. Since matrix inversion can be parallelized, algorithm 2 shows that
finding a perfect matching is in the RNC complexity class. There is no known algorithm for perfect
matchings that is in NC, and whether randomization is necessary for efficient parallel algorithms
is still an open question. Recently [ST17] made progress on this problem by showing that finding
perfect matchings is in quasi-NC.

References
[MVV87] Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. Matching is as easy as

matrix inversion. Combinatorica, 7(1):105–113, 1987.

[ST17] Ola Svensson and Jakub Tarnawski. The matching problem in general graphs is in quasi-
nc. In 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017,
Berkeley, CA, USA, October 15-17, 2017, pages 696–707, 2017.

	Polynomial Identity Testing
	Perfect Matchings in Bipartite Graphs
	Perfect Matching in General Graphs
	The Isolating Lemma
	Finding a Perfect Matching in a Bipartite Graph
	Finding a Perfect Matching in a General Graph
	Finding Maximum Matchings
	Finding perfect matchings with parallel computation

